TRB Pubsindex
Text Size:

Title:

Scanning Transmission X-Ray Microscopic Study of Carbonated Calcium Silicate Hydrate

Accession Number:

01157608

Record Type:

Component

Availability:

Transportation Research Board Business Office

500 Fifth Street, NW
Washington, DC 20001 United States
Order URL: http://www.trb.org/Main/Blurbs/Nanotec...Cement_and_Concrete_Volume_2_163738.aspx

Find a library where document is available


Order URL: http://worldcat.org/isbn/9780309142779

Abstract:

Calcium silicate hydrate (C-S-H) is the main hydration product of portland cement. Studying the structural and chemical decomposition of C-S-H after carbonation is critical for determining the durability and serviceability of concrete. Recent studies showed that the mechanical properties are likely to be enhanced when mineral admixtures and polymers are introduced. So far, no molecular-level studies have been conducted on carbonated C-S-H material to clarify these effects. In this research, scanning transmission X-ray microscopy (STXM) is used to study C-S-H modified with two organic polymers (hexadecyltrimethylammonium and polyethylene glycol 200) and exposed to different reaction times with CO2. STXM uses light in the soft X-ray region where a number of atomic resonances are present. By tuning the X-ray energies to a certain absorption edge, elemental and chemical identification was performed. The energy of the X-rays was tuned to the C K-edge, Ca L2,3-edge, and Si K-edge. Detailed images were also recorded with a lateral resolution of 30 nm. Structural, elemental, and chemical heterogeneities were spatially identified. Significant differences were found in carbon spectra in the atmospheric and 48-h continuous CO2-carbonated C-S-H samples, suggesting that carbon-containing precipitates formed within a C-S-H matrix differ depending on the extent of carbonation. Si K-edge spectra suggest increased polymerization of silicates depending on the duration of CO2 exposure. This study found that the degree of silicate polymerization and the coordination environment for carbon-containing mineral phases vary with the CO2 exposure level.

Monograph Accession #:

01157601

Report/Paper Numbers:

NANO10-0062

Language:

English

Authors:

Ha, J
Chae, S
Chou, K W
Tyliszczak, T
Monteiro, P J M

Pagination:

pp 83-88

Publication Date:

2010

Serial:

Transportation Research Record: Journal of the Transportation Research Board

Issue Number: 2142
Publisher: Transportation Research Board
ISSN: 0361-1981

ISBN:

9780309142779

Media Type:

Print

Features:

Figures (5) ; References (20)

Subject Areas:

Materials; I32: Concrete

Files:

TRIS, TRB, ATRI

Created Date:

May 27 2010 10:20AM

More Articles from this Serial Issue: