TRB Pubsindex
Text Size:

Title:

Exploratory Investigation of Nanomaterials to Improve Strength and Permeability of Concrete

Accession Number:

01157602

Record Type:

Component

Availability:

Transportation Research Board Business Office

500 Fifth Street, NW
Washington, DC 20001 United States
Order URL: http://www.trb.org/Main/Blurbs/Nanotec...Cement_and_Concrete_Volume_2_163738.aspx

Find a library where document is available


Order URL: http://worldcat.org/isbn/9780309142779

Abstract:

Concrete containing various supplementary cementitious materials (SCMs) such as silica fume, fly ash, and slag has improved properties. Nanomaterials, new SCMs with possible applications in concrete, have the smallest particle size (less than 100 nm). Nanomaterials are reactive because of the small size and large surface area of the particles, and they have great potential in improving concrete properties such as compressive strength and permeability. This study evaluates the use of a variety of nanomaterials in concrete compared with conventional concrete and concrete containing common SCMs. The potential benefits of using nanomaterials over other SCMs are high reactivity and cost-effectiveness; in addition, smaller amounts are necessary, resulting in less cement replacement. Concretes containing nanosilica and nanoclay were prepared in the laboratory. They were compared with concretes containing silica fume, fly ash, slag, or only portland cement. Specimens were tested for compressive strength and permeability. The microstructure of selected concretes with improved compressive strength and permeability was analyzed by using an atomic force microscope and nanoindenter to explain the improvements. The results of this study indicate that some of the nanomaterials tested have potential in concrete applications. The microstructure of the nanosilica concrete was denser and more uniform than the conventional concrete microstructure. In addition, the nanosilica had the largest improvement in both compressive strength and permeability among the nanomaterials tested.

Monograph Accession #:

01157601

Report/Paper Numbers:

NANO10-0029

Language:

English

Authors:

Ozyildirim, Celik
Zegetosky, Caroline

Pagination:

pp 1-8

Publication Date:

2010

Serial:

Transportation Research Record: Journal of the Transportation Research Board

Issue Number: 2142
Publisher: Transportation Research Board
ISSN: 0361-1981

ISBN:

9780309142779

Media Type:

Print

Features:

Figures (4) ; References (11) ; Tables (5)

Subject Areas:

Materials; I32: Concrete

Files:

TRIS, TRB, ATRI

Created Date:

May 26 2010 1:50PM

More Articles from this Serial Issue: