TRB Pubsindex
Text Size:

Title:

CHARACTERIZING GRANULAR MATERIAL COARSENESS AND MICROMECHANICAL PROPERTIES WITH A SMALL-DIAMETER PENETROMETER

Accession Number:

00800126

Record Type:

Component

Availability:

Transportation Research Board Business Office

500 Fifth Street, NW
Washington, DC 20001 United States

Find a library where document is available


Order URL: http://worldcat.org/isbn/030906693X

Abstract:

A micromechanical theory and data from a penetrometer with a small base area were used to characterize the average microstructural and micromechanical properties of snow, a granular material composed of ice. The micromechanical theory also was used to describe penetration in soil and successfully explains the dependence of penetration resistance for granular materials on penetrometer base area. Material coarseness (microstructural element dimension), elastic modulus, and compressive strength were determined by interpreting penetration resistance measurements by the micromechanical theory. Predictions of the macroscale (continuum) mechanical properties for the snow were made by the micromechanical measurements and theory. The average microstructural dimensions for snow were 3.6 mm (coarse grained) and 1.45 mm (fine grained). Micromechanical strength and modulus of elasticity of snow depend on internal structure and bonding at grain boundaries; grain size by itself was not a good indicator of the mechanical properties for snow. The accuracy of determining micromechanical and microstructural properties for individual microstructural elements decreases as the ratio of the penetrometer base area to the microstructural element cross-sectional area increases. Average micro- and macroscale structural and mechanical properties of a granular material can be determined by interpreting penetration resistance data with a micromechanical penetration theory. The resolution of measurement of material properties increases as the size of the penetrometer tip decreases.

Supplemental Notes:

This paper appears in Transportation Research Record No. 1714, Recycled and Secondary Materials, Soil Remediation, and In Situ Testing.

Language:

English

Corporate Authors:

Transportation Research Board

500 Fifth Street, NW
Washington, DC 20001 United States

Authors:

Johnson, J B

Pagination:

p. 83-88

Publication Date:

2000

Serial:

Transportation Research Record

Issue Number: 1714
Publisher: Transportation Research Board
ISSN: 0361-1981

ISBN:

030906693X

Features:

Figures (4) ; References (6) ; Tables (3)

Uncontrolled Terms:

Subject Areas:

Geotechnology; Highways; Materials; I41: General Soil Surveys

Files:

TRIS, TRB, ATRI

Created Date:

Oct 6 2000 12:00AM

More Articles from this Serial Issue: