TRB Pubsindex
Text Size:

Title:

FEATURE SELECTION FOR INTRUSION DETECTION WITH NEURAL NETWORKS AND SUPPORT VECTOR MACHINES

Accession Number:

00960126

Record Type:

Component

Availability:

Transportation Research Board Business Office

500 Fifth Street, NW
Washington, DC 20001 United States
Order URL: http://www.trb.org/Main/Public/Blurbs/152357.aspx

Find a library where document is available


Order URL: http://worldcat.org/isbn/0309085543

Abstract:

Computational intelligence (CI) methods are increasingly being used for problem solving, and CI-type learning machines are being used for intrusion detection. Intrusion detection is a problem of general interest to transportation infrastructure protection, since one of its necessary tasks is to protect the computers responsible for the infrastructures operational control, and an effective intrusion detection system (IDS) is essential for ensuring network security. Two classes of learning machines for IDSs are studied: artificial neural networks (ANNs) and support vector machines (SVMs). SVMs are shown to be superior to ANNs in three critical respects of IDSs: SVMs train and run an order of magnitude faster; they scale much better; and they give higher classification accuracy. A related issue is ranking the importance of input features, which is itself a problem of great interest. Since elimination of the insignificant (or useless) inputs leads to a simplified problem and possibly faster and more accurate detection, feature selection is very important in intrusion detection. Two methods for feature ranking are presented: the first one is independent of the modeling tool, while the second method is specific to SVMs. The two methods were applied to identify the important features in the 1999 Defense Advanced Research Projects Agency intrusion data set. It was shown that the two methods produce results that are largely consistent. Experimental results indicated that SVM-based IDSs with a reduced number of features can deliver enhanced or comparable performance. An SVM-based IDS for class-specific detection is proposed.

Supplemental Notes:

This paper appears in Transportation Research Record No. 1822, Transportation Security and Infrastructure Protection.

Language:

English

Corporate Authors:

Transportation Research Board

500 Fifth Street, NW
Washington, DC 20001 United States

Authors:

Mukkamala, S
Sung, A H

Pagination:

p. 33-39

Publication Date:

2003

Serial:

Transportation Research Record

Issue Number: 1822
Publisher: Transportation Research Board
ISSN: 0361-1981

ISBN:

0309085543

Features:

Figures (2) ; References (21) ; Tables (8)

Subject Areas:

Administration and Management; Planning and Forecasting; Safety and Human Factors; Security and Emergencies; Transportation (General); I72: Traffic and Transport Planning

Files:

TRIS, TRB, ATRI

Created Date:

Jul 21 2003 12:00AM

More Articles from this Serial Issue: