|
Title: Analyzing Passenger Incidence Behavior in Heterogeneous Transit Services Using Smartcard Data and Schedule-Based Assignment
Accession Number: 01373684
Record Type: Component
Record URL: Availability: Transportation Research Board Business Office 500 Fifth Street, NW Find a library where document is available Abstract: Passenger incidence (station arrival) behavior has been studied primarily to understand how changes to a transit service will affect passenger waiting times. The impact of one intervention (e.g., increasing frequency) could be overestimated when compared with another (e.g., improving reliability), depending on the assumption of incidence behavior. Understanding passenger incidence allows management decisions to be based on realistic behavioral assumptions. Earlier studies on passenger incidence chose their data samples from stations with a single service pattern such that the linking of passengers to services was straightforward. This choice of data samples simplifies the analysis but heavily limits the stations that can be studied. In any moderately complex network, many stations may have more than one service pattern. This limitation prevents the method from being systematically applied to the whole network and constrains its use in practice. This paper considers incidence behavior in stations with heterogeneous services and proposes a method for estimating incidence headway and waiting time by integrating disaggregate smartcard data with published timetables using schedule-based assignment. This method is applied to stations in the entire London Overground to demonstrate its practicality; incidence behavior varies across the network and across times of day and reflects headways and reliability. Incidence is much less timetable-dependent on the North London Line than on the other lines because of shorter headways and poorer reliability. Where incidence is timetable-dependent, passengers reduce their mean scheduled waiting time by more than 3 min compared with random incidence.
Monograph Accession #: 01449088
Report/Paper Numbers: 12-0738
Language: English
Authors: Frumin, MichaelZhao, JinhuaPagination: pp 52–60
Publication Date: 2012
ISBN: 9780309223171
Media Type: Print
Features: Figures; Maps; References; Tables
TRT Terms: Identifier Terms: Subject Areas: Data and Information Technology; Passenger Transportation; Public Transportation; I72: Traffic and Transport Planning
Files: TRIS, TRB, ATRI
Created Date: Feb 8 2012 4:57PM
More Articles from this Serial Issue:
|