Abstract:
Congested freeway interchanges normally suffer from the spillback of off-ramp and on-ramp queues. The traffic signals around a congested interchange can also experience link-blockage and lane-blockage problems. For an overall system performance around an interchange to be improved, both freeway and arterial performance must be considered to optimize signal timings. This study extends the cell transmission concept and proposes a set of new formulations to capture the traffic dynamic with link blockage, lane blockage, and ramp spillback. On the basis of these formulations, an integrated control model for optimizing interchanges and a solution method based on a genetic algorithm are proposed. The model’s performance was demonstrated in a case study with different traffic scenarios for the interchange connecting Georgia Avenue (MD-97) and the Capital Beltway (I-495) in Silver Spring, Maryland. The resulting signal timings were compared with those from TRANSYT-7F (Release 10). For fair comparison, this study used CORSIM, a third-party simulation package, as the performance evaluator. Results indicated that the proposed model was promising and could improve freeway and arterial performance.