TRB Pubsindex
Text Size:

Title:

NEW CLASS OF REACTIVE POLYMER MODIFIERS FOR ASPHALT: MITIGATION OF LOW-TEMPERATURE DAMAGE

Accession Number:

00803833

Record Type:

Component

Availability:

Transportation Research Board Business Office

500 Fifth Street, NW
Washington, DC 20001 United States

Find a library where document is available


Order URL: http://worldcat.org/isbn/0309067316

Abstract:

Results from the low-temperature performance evaluation of a new class of reactive polymer modifiers designed to improve binder-aggregate adhesion in asphalt concrete are discussed. A living free radical polymerization process was used to prepare polyisoprene (PI) with short blocks of reactive silane-functional monomer at one end of the polymer chain. Performance was evaluated with the thermal stress restrained specimen test at a cooling rate of -10 deg C/h. The results obtained were compared with those for unmodified and styrene-butadiene (SB)-modified mixes. When added at 3 and 6% by weight of the binder, SB reduced the fracture temperature of the asphalt concrete by 6 deg C and 9 deg C, respectively. Similar results were obtained with the reactive polymers. However, although all the SB-modified samples failed in a catastrophic mode, none of the samples containing the silane-functional PI did. It is hypothesized that these polymers toughened the asphalt to an extent that cracks were only able to grow in a stable mode as opposed to an unstable mode or that localized yielding occurred. The method for obtaining the desired toughening effect is flexible; lower-cost monomers, such as butadiene, and more common polymerization methods, such as emulsion or anionic polymerization techniques, could be used equally well to produce polymers with similar or better performance characteristics. An added benefit is that the tested polymers were able to improve the stripping resistance of the mix significantly.

Supplemental Notes:

This paper appears in Transportation Research Record No. 1728, Asphalt Binders 2000.

Language:

English

Corporate Authors:

Transportation Research Board

500 Fifth Street, NW
Washington, DC 20001 United States

Authors:

Crossley, G A
Hesp, SAM

Pagination:

p. 68-74

Publication Date:

2000

Serial:

Transportation Research Record

Issue Number: 1728
Publisher: Transportation Research Board
ISSN: 0361-1981

ISBN:

0309067316

Features:

Figures (4) ; References (23) ; Tables (3)

Uncontrolled Terms:

Subject Areas:

Highways; Materials; I31: Bituminous Binders and Materials

Files:

TRIS, TRB, ATRI

Created Date:

Dec 7 2001 12:00AM

More Articles from this Serial Issue: