TRB Pubsindex
Text Size:

Title:

Efficient Road Crack Detection Based on an Adaptive Pixel-Level Segmentation Algorithm

Accession Number:

01764683

Record Type:

Component

Availability:

Find a library where document is available


Order URL: http://worldcat.org/issn/03611981

Abstract:

Cracks considerably reduce the life span of pavement surfaces. Currently, there is a need for the development of robust automated distress evaluation systems that comprise a low-cost crack detection method for performing fast and cost-effective roadway health monitoring practices. Most of the current methods are costly and have labor-intensive learning processes, so they are not suitable for small local-level projects with limited resources or are only usable for specific pavement types.This paper proposes a new method that uses an adapted version of the weighted neighborhood pixels segmentation algorithm to detect cracks in 2-D pavement images. The method uses the Gaussian cumulative density function (CDF) as the adaptive threshold to overcome the drawback of fixed thresholds in noisy environments. The proposed algorithm was tested on 300 images containing a wide range of noise representative of various pavement noise conditions. The method proved to be time and cost-efficient as it took less than 3.15?s per 320?×?480 pixels image for a Xeon (R) 3.70?GHz CPU processor to generate the detection results. This makes the proposed method a perfect choice for county-level pavement maintenance projects requiring cost-effective pavement crack detection systems. The validation results were promising for the detection of medium to severe-level cracks (precision?=?79.21%, recall?=?89.18%, and F1 score?=?83.90%).

Supplemental Notes:

The data for this study is available and can be accessed through: https://drive.google.com/file/d/1U8Ie-H-JYZUU5lSN0IXEiNf_S64g4kv8/view?usp=sharing (Safaei, Smadi, Safaei and Masoud, 2021). © National Academy of Sciences: Transportation Research Board 2021.

Report/Paper Numbers:

TRBAM-21-02055

Language:

English

Authors:

Safaei, Nima
Smadi, Omar
Safaei, Babak
Masoud, Arezoo

Pagination:

pp 370-381

Publication Date:

2021-9

Serial:

Transportation Research Record: Journal of the Transportation Research Board

Volume: 2675
Issue Number: 9
Publisher: Sage Publications, Incorporated
ISSN: 0361-1981
EISSN: 2169-4052
Serial URL: http://journals.sagepub.com/home/trr

Media Type:

Digital/other

Features:

Figures; Photos; References (59) ; Tables

Subject Areas:

Data and Information Technology; Finance; Highways; Maintenance and Preservation; Pavements

Files:

TRIS, TRB, ATRI

Created Date:

Feb 1 2021 12:09PM