TRB Pubsindex
Text Size:

Title:

Adaptation Planning to Mitigate Coastal-Road Pavement Damage from Groundwater Rise Caused by Sea-Level Rise

Accession Number:

01666413

Record Type:

Component

Availability:

Find a library where document is available


Order URL: http://worldcat.org/issn/03611981

Abstract:

Sea level in coastal New England is projected to rise 3.9–6.6 ft (1.2–2.0 m) by the year 2100. Many climate-change vulnerability and adaptation studies have investigated surface-water flooding from sea-level rise (SLR) on coastal-road infrastructure, but few have focused on rising groundwater. Groundwater modeling in New Hampshire’s Seacoast Region has shown that SLR-induced groundwater rise will occur three to four times farther inland than surface-water flooding, potentially impacting 23% of the region’s roads. Pavement service-life has been shown to decrease when the unbound layers become saturated. In areas where groundwater is projected to rise with SLR, pavements with groundwater 5.0 ft (1.5 m) deep or less are at risk of premature failure as groundwater moves into the pavement’s underlying unbound layers. In this study, groundwater hydrology and multi-layer elastic pavement analysis were used to identify two case-study sites in coastal New Hampshire that are predicted to experience pavement service-life reduction caused by SLR-induced groundwater rise. Various pavement structures were evaluated to determine adaptation feasibility and costs to maintain the designed service-life in the face of rising groundwater. This investigation shows that relatively simple pavement structural modifications to the base and asphalt concrete (AC) layers of a regional corridor can eliminate the 80% to 90% service-life reduction projected with 1.0 ft SLR (year 2030) and will delay pavement inundation by 20 years. Pavements with adequate base-layer materials and thickness require only AC thickness modification to avoid premature pavement failure from SLR-induced groundwater rise.

Report/Paper Numbers:

18-03258

Language:

English

Authors:

Knott, Jayne F
Daniel, Jo Sias
Jacobs, Jennifer M
Kirshen, Paul

Pagination:

pp 11-22

Publication Date:

2018

Serial:

Transportation Research Record: Journal of the Transportation Research Board

Volume: 2672
Issue Number: 2
Publisher: Sage Publications, Incorporated
ISSN: 0361-1981
EISSN: 2169-4052
Serial URL: http://journals.sagepub.com/home/trr

Media Type:

Print

Features:

Figures (4) ; Maps; References (25) ; Tables (5)

Uncontrolled Terms:

Geographic Terms:

Subject Areas:

Design; Environment; Highways; Hydraulics and Hydrology; Pavements

Files:

TRIS, TRB, ATRI

Created Date:

Dec 22 2017 10:37AM

More Articles from this Serial Issue: