TRB Pubsindex
Text Size:

Title:

Optimization of Dynamic Ridesharing Systems

Accession Number:

01474983

Record Type:

Component

Availability:

Transportation Research Board Business Office

500 Fifth Street, NW
Washington, DC 20001 United States
Order URL: http://www.trb.org/main/blurbs/169697.aspx

Find a library where document is available


Order URL: http://worldcat.org/isbn/9780309286770

Abstract:

Internet-enabled technologies are becoming more widespread; users are constantly connected to the network in every place and daily activity. Access to transportation-related features—mobile payment systems, Global Positioning System connections, real-time public transit timetables or traffic congestion information, and so on—is easy. This access results in new ways to plan mobility. In the innovative mobility systems implemented and developed with these technologies, the new real-time capabilities of dynamic ridesharing, an extended version of traditional ridesharing, can play a key role if the relevant performance is improved. In other words, although ridesharing is not a new idea, recent technological advances should increase its popularity. In this paper, a proposed ridesharing system considers the interactions between drivers or riders and the system manager and the interactions between drivers and riders. The positions and speeds of the shared vehicles and the traffic flows in which such vehicles travel are omitted. To optimize the performance of the ridesharing system, a discrete event, dynamic pickup and delivery model that represents the considered dynamics and an optimal matching problem that optimally allocates an empty seat in a vehicle to a rider are proposed. The dynamic model represents the behavior of the ridesharing system and computes the relevant performance; the optimization problem finds the best match and path in the considered transportation network to minimize the difference between the desired departure and arrival times. In this paper, after the introduction of the ridesharing model, the discussion of the solution to the optimal matching problem, a simulation model is described. A real world case study is then presented and discussed.

Monograph Accession #:

01495451

Report/Paper Numbers:

13-0450

Language:

English

Authors:

Di Febbraro, A
Gattorna, E
Sacco, N

Pagination:

pp 44-50

Publication Date:

2013

Serial:

Transportation Research Record: Journal of the Transportation Research Board

Issue Number: 2359
Publisher: Transportation Research Board
ISSN: 0361-1981

ISBN:

9780309286770

Media Type:

Print

Features:

Figures (4) ; References (23) ; Tables (2)

Subject Areas:

Administration and Management; Data and Information Technology; Highways; Passenger Transportation; Policy; Public Transportation; I70: Traffic and Transport

Files:

TRIS, TRB, ATRI

Created Date:

Feb 5 2013 12:13PM

More Articles from this Serial Issue: