Retrieving results...
Title:
Real-Time Freeway-Experienced Travel Time Prediction Using N-Curve and k Nearest Neighbor Methods
Accession Number:
01362317
Abstract:
This study presents a methodology for freeway travel time prediction that uses only count data. The proposed models include the generalized N-curve method in conjunction with the k nearest neighbor (kNN) method so that the travel time predicted for traversing a defined freeway segment at a certain departure time is similar to what a driver actually experiences. A real-world traffic network and demand are replicated in a traffic simulation model in which several scenarios are produced to serve as the test bed for evaluation and validation of the proposed algorithms. The proposed single-NN algorithm best predicts travel times for light, free-flow traffic conditions, and the multiple-NN algorithm best predicts travel times for congested traffic conditions. The hybrid-NN algorithm merges the single-NN and multiple-NN algorithms, exploiting each one where most suitable. A numerical analysis concludes the potential of the proposed models.
Monograph Accession #:
01362318
Report/Paper Numbers:
11-4060
Authors:
Bustillos, Brenda I
Chiu, Yi-Chang
Features:
Figures
(6)
; References
(26)
; Tables
(1)
Subject Areas:
Highways; Operations and Traffic Management; Planning and Forecasting; I72: Traffic and Transport Planning
Created Date:
Feb 3 2012 9:00AM
More Articles from this Serial Issue: