TRB Pubsindex
Text Size:

Title:

OBSERVATION-BASED LANE-VEHICLE ASSIGNMENT HIERARCHY: MICROSCOPIC SIMULATION ON URBAN STREET NETWORK

Accession Number:

00802587

Record Type:

Component

Availability:

Transportation Research Board Business Office

500 Fifth Street, NW
Washington, DC 20001 United States

Find a library where document is available


Order URL: http://worldcat.org/isbn/0309066891

Abstract:

A lane-assignment model in a vehicle-based microscopic simulation system describes a vehicle's position during its journey on an urban street network. In other words, it is used to estimate an individual vehicle's location, speed, routing plan, lane-choice plan, lane-changing plan, and car-following plan from its entrance to a street network until the end of the trip. From the authors' observations and study of lane-choice and lane-changing behavior, it is concluded that a vehicle is assigned to a lane in a logical manner depending on the relationship between its route-planned motivation and traffic conditions in the current lane and other lanes. A lane-assignment model consists of three components: lane choice, car following, and lane changing. The lane-changing component is composed of three submodels--a decision model, a lane-changing condition model, and a lane-changing maneuver model. Rules are discussed for lane-choice and lane-changing modeling based on videotaped observations over four-lane urban streets. Then a heuristic structure of a lane-vehicle-assignment model is proposed, which exposes the inherent relationship between vehicle-based travel behavior and lane-vehicle assignment on an urban street network. With the addition of a lane-assignment model derived from observed data, a simulation may be developed to correctly represent travel behavior and dynamic traffic assignment at the lane level and provide a more effective tool for design and evaluation of the performance of strategies for traffic control, traveler information, and congestion alleviation.

Supplemental Notes:

This paper appears in Transportation Research Record No. 1710, Traffic Flow Theory and Highway Capacity 2000.

Language:

English

Corporate Authors:

Transportation Research Board

500 Fifth Street, NW
Washington, DC 20001 United States

Authors:

Wei, Hui
Lee, Jong Jae
Li, Q
Li, C J

Pagination:

p. 96-103

Publication Date:

2000

Serial:

Transportation Research Record

Issue Number: 1710
Publisher: Transportation Research Board
ISSN: 0361-1981

ISBN:

0309066891

Features:

Figures (9) ; References (6)

Uncontrolled Terms:

Subject Areas:

Highways; Operations and Traffic Management; I71: Traffic Theory; I73: Traffic Control

Files:

TRIS, TRB, ATRI

Created Date:

Nov 29 2000 12:00AM

More Articles from this Serial Issue: