|
Title: STRUCTURAL BEHAVIOR OF THREE-SIDED ARCH SPAN BRIDGE
Accession Number: 00730348
Record Type: Component
Record URL: Availability: Find a library where document is available Abstract: A study was undertaken to evaluate the methodology used for the structural design of three-sided culverts with arched top slabs. An 11-m span by 3.4-m rise bridge was instrumented and monitored during installation, under an HS-25 + 30% live load and at 6-month intervals for 2 years after installation. The bridge consisted of ten 1.6-m-wide precast segments. Three of the interior segments were instrumented with soil stress cells mounted on the legs of the bridge and with anchor pins for use with a tape extensometer to determine change in shape of the bridge. Survey data were taken on the same three segments and the two adjacent segments. Visual observations were also made to monitor cracking. The live load test was conducted with 0.3 m of cover. Final cover was 0.9 m. The bridge showed less movement under the live load than under the 0.9 m of earth load. The 2-year data show that the shape of the bridge and the soil stresses at the sides of the bridge cycle on an annual basis and that the spans have increased 4 to 8 mm over the 2 years since the completion of construction and appear to be still increasing. Overall, the structural performance of the bridge under earth and live loads was excellent. The correlation between the measured behavior and the computer analysis was good except that the actual live load effects were much smaller than assumed for design. The results of the project support the use of finite-element analysis to design such structures.
Supplemental Notes: This paper appears in Transportation Research Record No. 1541, Structures, Culverts, and Tunnels.
Language: English
Corporate Authors: Transportation Research Board 500 Fifth Street, NW Authors: McGrath, T JSelig, E TBeach, T JPagination: p. 112-119
Publication Date: 1996
Serial: ISBN: 0309059143
Features: Figures
(11)
; References
(3)
; Tables
(2)
TRT Terms:
Analysis; Arch bridges; Bridge design; Bridges; Correlation analysis; Expansion; Extensometers; Finite element method; Fracture mechanics; Information processing; Inspection; Live loads; Monitoring; Shape; Soils; Stress gages; Structural analysis; Structural design; Structural mechanics; Testing; Vision
Uncontrolled Terms: Old TRIS Terms: Subject Areas: Bridges and other structures; Data and Information Technology; Design; Geotechnology; Highways; I24: Design of Bridges and Retaining Walls
Files: TRIS, TRB
Created Date: Jan 2 1997 12:00AM
More Articles from this Serial Issue:
|