|
Title: Calibration of the Two-Fluid Model with Third-Party Crowdsourced Data - A Procedure and Evaluation
Accession Number: 01660939
Record Type: Component
Abstract: The two-fluid model is a well-established relation of network and corridor level trip time to the proportion of stopped and running vehicles. Historically, data required by the two-fluid model is obtained through chase-car experiments where vehicles in a network or corridor are followed. Recently, this technique is being supplemented or replaced by GPS probe data. Using a third-party GPS vendor’s (TomTom) crowdsourced, aggregated and processed data, a simple methodology is adapted from previous literature in order to obtain the two-fluid model parameters more efficiently. The advantage of this method over more conventional methods is that it does not need labor or time intensive procedures, or complex data cleaning methodologies. Statistical analysis reveals that the distribution of the stopped fraction of vehicles obtained from the method follow similar travel time behavior from other related studies such as right-skew and heavy tailing. Heteroscedasticity was observed, and controlled for by the use of weighted least-squares with differing weights. The resulting two-fluid model parameters are comparable to literature, and provide results relatively close to observed values of the running and average speed. This suggests that the methodology proposed can be a quick, and efficient tool for calibrating the two-fluid model for both research and practice.
Supplemental Notes: This paper was sponsored by TRB committee AHB45 Standing Committee on Traffic Flow Theory and Characteristics.
Alternate title: Calibration of the Two-Fluid Model with Third-Party Crowdsourced Data: A Procedure and Evaluation
Report/Paper Numbers: 18-05683
Language: English
Authors: Manuel, AaronKattan, LinaTahmasseby, Shahramde Barros, AlexandrePagination: 21p
Publication Date: 2018
Conference:
Transportation Research Board 97th Annual Meeting
Location:
Washington DC, United States Media Type: Digital/other
Features: Figures; Maps; References; Tables
TRT Terms: Identifier Terms: Uncontrolled Terms: Subject Areas: Data and Information Technology; Highways; Operations and Traffic Management; Vehicles and Equipment
Source Data: Transportation Research Board Annual Meeting 2018 Paper #18-05683
Files: TRIS, TRB, ATRI
Created Date: Jan 8 2018 11:27AM
|