|
Title: Improving Scalability of Generic Online Calibration for Real-Time Dynamic Traffic Assignment Systems
Accession Number: 01660320
Record Type: Component
Record URL: Availability: Find a library where document is available Abstract: Flexible calibration of dynamic traffic assignment (DTA) systems in real time has important applications in effective traffic management. However, the existing approaches are either limited to small networks or to a specific class of parameters. In this light, this study presents a framework to systematically reduce the dimension of the generic online calibration problem, making it more scalable. Specifically, a state–space formulation of the problem in the reduced dimension space is proposed. Following this the problem is solved using the constrained extended Kalman filter, which is made tractable because of the low dimensionality of the formulated problem. The effectiveness of the proposed approach is demonstrated using a real-world network leading to better state estimation by 13% and better state predictions by 11%—with a 50 fold dimensionality reduction. Insights into choosing the right degree of dimensionality reduction are also discussed. This work has the potential for a more widespread application of real-time DTA systems in practice.
Report/Paper Numbers: 18-04982
Language: English
Authors: Prakash, A. ArunSeshadri, RaviAntoniou, ConstantinosPereira, Francisco CBen-Akiva, MoshePagination: pp 79-92
Publication Date: 2018-12
Serial:
Transportation Research Record: Journal of the Transportation Research Board
Volume: 2672 Media Type: Digital/other
Features: Figures
(5)
; References
(23)
; Tables
(1)
TRT Terms: Subject Areas: Highways; Operations and Traffic Management
Files: TRIS, TRB, ATRI
Created Date: Jan 8 2018 11:14AM
More Articles from this Serial Issue:
|