TRB Pubsindex
Text Size:

Title:

Detecting Peak-Hour Freeway Incidents Using Machine Learning

Accession Number:

01555303

Record Type:

Component

Availability:

Transportation Research Board Business Office

500 Fifth Street, NW
Washington, DC 20001 United States

Abstract:

The purpose of this study is to evaluate application of a type of supervised machine learning model called support vector machine (SVM) to freeway automatic incident detection. Many automatic incident detection algorithms are focused on identifying changes in traffic patterns but do not adequately investigate similarities in patterns observed under incident-free conditions. The most challenging part of real-time incident detection is recognition of traffic pattern changes when incidents happen during rush hour stop-and-go conditions. Incident detection can be described as a pattern classification problem and SVMs have pattern learning algorithms that have been successfully applied to incident detection. Previous evaluation studies have been based on either simulation data or the I-880 database. The possible issue with these is that non-incident traffic patterns may be biased by actual incident data. This study uses field traffic pattern data to overcome the problem of incident detection during peak hour. Data collected by the Dallas traffic control center including upstream and downstream speed and volume and typical upstream speed profiles. All parameters were used as base model input and different scenarios were defined, in terms of SVM kernel functions (the sigmoid and RBF) and different parameters combination. Cross-validation has been applied to increase classification accuracy. Based on this evaluation, the proposed SVM model provides reliable results.

Supplemental Notes:

This paper was sponsored by TRB committee ABJ50 Information Systems and Technology.

Monograph Accession #:

01550057

Report/Paper Numbers:

15-2351

Language:

English

Corporate Authors:

Transportation Research Board

500 Fifth Street, NW
Washington, DC 20001 United States

Authors:

Motamed, Moggan
Machemehl, Randy B

Pagination:

14p

Publication Date:

2015

Conference:

Transportation Research Board 94th Annual Meeting

Location: Washington DC, United States
Date: 2015-1-11 to 2015-1-15
Sponsors: Transportation Research Board

Media Type:

Digital/other

Features:

Figures; References; Tables

Uncontrolled Terms:

Subject Areas:

Data and Information Technology; Highways; Operations and Traffic Management; I72: Traffic and Transport Planning; I73: Traffic Control

Source Data:

Transportation Research Board Annual Meeting 2015 Paper #15-2351

Files:

TRIS, TRB, ATRI

Created Date:

Dec 30 2014 12:50PM