TRB Pubsindex
Text Size:

Title:

Evaluation of Environmental Susceptibility of Bituminous Mastic Viscosity as a Function of Mineral and Biomass Fillers

Accession Number:

01475556

Record Type:

Component

Availability:

Transportation Research Board Business Office

500 Fifth Street, NW
Washington, DC 20001 United States
Order URL: http://www.trb.org/Main/Blurbs/169956.aspx

Find a library where document is available


Order URL: http://worldcat.org/isbn/9780309286947

Abstract:

Bituminous mastics influence many other important asphalt mixture properties in addition to their own allowance for the load transfer in the aggregate skeleton. The influence of bituminous mastics extends to the overall stability of a mixture, air void distribution, bitumen draindown during transport, a mixture’s workability during the laying process, and the overall in-time performance of the pavement. To understand the properties of asphalt mixtures and their resistance to environmentally induced failure mechanisms, it is paramount to study not only bitumen and the asphalt mixture but also the mastic itself. Current asphalt design procedures do not take mastic behavior into account, however; this omission leads to a significant flaw in the ability to design and predict asphalt concrete response. This paper presents the results of an ongoing research project to enhance the understanding of the mastic phase as well as to develop a new test protocol to characterize mastics. A description is given of the measurements of mastic viscosity for different types of mastics in which the bitumen source is kept as a constant but with varying fillers as well as concentrations. Environmental susceptibility was investigated by subjecting the samples to aging and moisture conditioning. Biomass fillers were included in some of the mastics, in addition to some of the traditional fillers, to show their impact on the viscosity under varying conditions. Results showed that the developed test protocol was able to identify clearly the impact of filler properties on the mastic viscosity. A critical filler concentration was identified beyond which the viscosity behavior became nonlinear. The results also showed that moisture and aging had significant effects on the viscosity of mastics.

Monograph Accession #:

01500961

Report/Paper Numbers:

13-2501

Language:

English

Authors:

Hesami, Ebrahim
Bidewell, Nathan
Birgisson, Björn
Kringos, Niki

Pagination:

pp 23–31

Publication Date:

2013

Serial:

Transportation Research Record: Journal of the Transportation Research Board

Issue Number: 2371
Publisher: Transportation Research Board
ISSN: 0361-1981

ISBN:

9780309286947

Media Type:

Print

Features:

Figures (9) ; Photos; References (12)

Subject Areas:

Highways; Materials; Pavements; I22: Design of Pavements, Railways and Guideways; I31: Bituminous Binders and Materials

Files:

TRIS, TRB, ATRI

Created Date:

Feb 5 2013 12:32PM

More Articles from this Serial Issue: